Greenhouse gas emissions

  (Redirected from Carbon emissions)
Jump to navigation Jump to search
This bar graph shows global greenhouse gas emissions by sector from 1990 to 2005, measured in 100-year estimated carbon dioxide equivalents.[1]

Greenhouse gas emissions are emissions of greenhouse gases created from a range of human activities that cause climate change, as they have increased concentrations in the earth's atmosphere. These emissions mainly include carbon dioxide emissions from combustion of fossil fuels, principally coal, petroleum (including oil) and natural gas; however, these also include deforestation and other changes in land use.[2][3] A 2017 survey of corporations responsible for global emissions found that 100 companies were responsible for 71% of global direct and indirect emissions, and that state-owned companies were responsible for 59% of their emissions.[4][5]

There are multiple types of greenhouse gases, so different emissions come from different sectors. For example, the leading source of anthropogenic methane emissions is agriculture, closely followed by gas venting and fugitive emissions from the fossil-fuel industry.[6][7] Traditional rice cultivation is the second biggest agricultural methane source after livestock, with a near-term warming impact equivalent to the carbon-dioxide emissions from all aviation.[8] Similarly, fluorinated gases from refrigerants play an outsized role in total human emissions.

At current emission rates, temperatures could increase by 2 °C (3.6 °F), which the United Nations' Intergovernmental Panel on Climate Change (IPCC) designated as the upper limit to avoid "dangerous" levels, by 2036.[9]

Measurements and calculations[edit]

Carbon dioxide, methane, nitrous oxide (N
2
O
) and three groups of fluorinated gases (sulfur hexafluoride (SF
6
), hydrofluorocarbons (HFCs), and perfluorocarbons (PFCs)) are the major anthropogenic greenhouse gases,[10]:147[11] and are regulated under the Kyoto Protocol international treaty, which came into force in 2005.[12] Emissions limitations specified in the Kyoto Protocol expired in 2012.[12] The Cancún agreement, agreed on in 2010, includes voluntary pledges made by 76 countries to control emissions.[13] At the time of the agreement, these 76 countries were collectively responsible for 85% of annual global emissions.[13]

Although CFCs are greenhouse gases, they are regulated by the Montreal Protocol, which was motivated by CFCs' contribution to ozone depletion rather than by their contribution to global warming. Note that ozone depletion has only a minor role in greenhouse warming, though the two processes often are confused in the media. In 2016, negotiators from over 170 nations meeting at the summit of the United Nations Environment Programme reached a legally binding accord to phase out hydrofluorocarbons (HFCs) in an amendment to the Montreal Protocol.[14][15][16]

There are several ways of measuring greenhouse gas emissions, for example, see World Bank (2010)[17]:362 for tables of national emissions data. Some variables that have been reported include:[18]

  • Definition of measurement boundaries: Emissions can be attributed geographically, to the area where they were emitted (the territory principle) or by the activity principle to the territory produced the emissions. These two principles result in different totals when measuring, for example, electricity importation from one country to another, or emissions at an international airport.
  • Time horizon of different gases: Contribution of a given greenhouse gas is reported as a CO
    2
    equivalent. The calculation to determine this takes into account how long that gas remains in the atmosphere. This is not always known accurately and calculations must be regularly updated to reflect new information.
  • What sectors are included in the calculation (e.g., energy industries, industrial processes, agriculture etc.): There is often a conflict between transparency and availability of data.
  • The measurement protocol itself: This may be via direct measurement or estimation. The four main methods are the emission factor-based method, mass balance method, predictive emissions monitoring systems, and continuous emissions monitoring systems. These methods differ in accuracy, cost, and usability. Public information from space-based measurements of carbon dioxide by Climate Trace is expected to reveal individual large plants before the 2021 United Nations Climate Change Conference.[19]

These measures are sometimes used by countries to assert various policy/ethical positions on climate change.[20]:94 The use of different measures leads to a lack of comparability, which is problematic when monitoring progress towards targets. There are arguments for the adoption of a common measurement tool, or at least the development of communication between different tools.[18]

Emissions may be measured over long time periods. This measurement type is called historical or cumulative emissions. Cumulative emissions give some indication of who is responsible for the build-up in the atmospheric concentration of greenhouse gases.[21]:199

The national accounts balance would be positively related to carbon emissions. The national accounts balance shows the difference between exports and imports. For many richer nations, such as the United States, the accounts balance is negative because more goods are imported than they are exported. This is mostly due to the fact that it is cheaper to produce goods outside of developed countries, leading the economies of developed countries to become increasingly dependent on services and not goods. We believed that a positive accounts balance would means that more production was occurring in a country, so more factories working would increase carbon emission levels.[22]

Emissions may also be measured across shorter time periods. Emissions changes may, for example, be measured against a base year of 1990. 1990 was used in the United Nations Framework Convention on Climate Change (UNFCCC) as the base year for emissions, and is also used in the Kyoto Protocol (some gases are also measured from the year 1995).[10]:146, 149 A country's emissions may also be reported as a proportion of global emissions for a particular year.

Another measurement is of per capita emissions. This divides a country's total annual emissions by its mid-year population.[17]:370 Per capita emissions may be based on historical or annual emissions.[20]:106–107

While cities are sometimes considered to be disproportionate contributors to emissions, per-capita emissions tend to be lower for cities than the averages in their countries.[23]

Sources[edit]

Modern global CO2 emissions from the burning of fossil fuels.

Since about 1750 human activity has increased the concentration of carbon dioxide and other greenhouse gases. As of 2001, measured atmospheric concentrations of carbon dioxide were 100 ppm higher than pre-industrial levels.[24][needs update] Natural sources of carbon dioxide are more than 20 times greater than sources due to human activity,[25] but over periods longer than a few years natural sources are closely balanced by natural sinks, mainly photosynthesis of carbon compounds by plants and marine plankton. As a result of this balance, the atmospheric mole fraction of carbon dioxide remained between 260 and 280 parts per million for the 10,000 years between the end of the last glacial maximum and the start of the industrial era.[26] Absorption of terrestrial infrared radiation by longwave absorbing gases such as these greenhouse gases make Earth an efficient[clarification needed] emitter. Therefore, in order for Earth to emit as much energy as is absorbed, global temperatures must increase.

It is likely that anthropogenic (human-induced) warming, such as that due to elevated greenhouse gas levels, has had a discernible influence on many physical and biological systems.[27] Warming is having a range of impacts, including sea level rise,[28] increased frequencies and severities of some extreme weather events,[28] loss of biodiversity,[29] and regional changes in agricultural productivity.[30]

The main sources of greenhouse gases due to human activity are:

The seven sources of CO
2
from fossil fuel combustion are (with percentage contributions for 2000–2004):[33]

This list needs updating, as it uses an out of date source.[needs update]

Emissions by sector[edit]

Chart showing 2016 global greenhouse gas emissions by sector.[34] Percentages are calculated from estimated global emissions of all Kyoto Greenhouse Gases, converted to CO2 equivalent quantities (GtCO2e).
Mean greenhouse gas emissions for different food types[35]
Food Types Greenhouse Gas Emissions (g CO2-Ceq per g protein)
Ruminant Meat
62
Recirculating Aquaculture
30
Trawling Fishery
26
Non-recirculating Aquaculture
12
Pork
10
Poultry
10
Dairy
9.1
Non-trawling Fishery
8.6
Eggs
6.8
Starchy Roots
1.7
Wheat
1.2
Maize
1.2
Legumes
0.25

Global greenhouse gas emissions can be attributed to different sectors of the economy. This provides a picture of the varying contributions of different types of economic activity to global warming, and helps in understanding the changes required to mitigate climate change. According to the Environmental Protection Agency (EPA), GHG emissions in the United States can be traced from different sectors.

Manmade greenhouse gas emissions can be divided into those that arise from the combustion of fuels to produce energy, and those generated by other processes. Around two thirds of greenhouse gas emissions arise from the combustion of fuels.[36]

Energy may be produced at the point of consumption, or by a generator for consumption by others. Thus emissions arising from energy production may be categorised according to where they are emitted, or where the resulting energy is consumed. If emissions are attributed at the point of production, then electricity generators contribute about 25% of global greenhouse gas emissions.[37] If these emissions are attributed to the final consumer then 24% of total emissions arise from manufacturing and construction, 17% from transportation, 11% from domestic consumers, and 7% from commercial consumers.[38] Around 4% of emissions arise from the energy consumed by the energy and fuel industry itself.

The remaining third of emissions arise from processes other than energy production. 12% of total emissions arise from agriculture, 7% from land use change and forestry, 6% from industrial processes, and 3% from waste.[36] Around 6% of emissions are fugitive emissions, which are waste gases released by the extraction of fossil fuels.

As of 2020 Secunda CTL is the world's largest single emitter, at 56.5 million tonnes CO2 a year.[39]

Aviation[edit]

Approximately 3.5% of the overall human impact on climate are from the aviation sector. The impact of the sector on climate in the late 20 years had doubled, but the part of the contribution of the sector in comparison to other sectors did not change because other sectors grew as well.[40]

Buildings and construction[edit]

In 2018, manufacturing construction materials and maintaining buildings accounted for 39% of carbon dioxide emissions from energy and process-related emissions. Manufacture of glass, cement, and steel accounted for 11% of energy and process-related emissions.[41] Because building construction is a significant investment, more than two-thirds of buildings in existence will still exist in 2050. Retrofitting existing buildings to become more efficient will be necessary to meet the targets of the Paris Agreement; it will be insufficient to only apply low-emission standards to new construction.[42] Buildings that produce as much energy as they consume are called zero-energy buildings, while buildings that produce more than they consume are energy-plus. Low-energy buildings are designed to be highly efficient with low total energy consumption and carbon emissions—a popular type is the passive house.[41]

Digital sector[edit]

In 2017 the digital sector produced 3.3% of global GHG emissions, above civil aviation (2%). In 2020 this is expected to reach 4%, the equivalent emissions of India in 2015.[43][44][needs update] However the sector reduces emissions from other sectors which have a larger global share, such as transport of people.[45]

Electricity generation[edit]

Electricity generation emits over a quarter of global greenhouse gases.[46] Coal-fired power stations are the single largest emitter, with over 10 Gt CO
2
in 2018.[47] Although much less polluting than coal plants, natural gas-fired power plants are also major emitters.[48]

Pharmaceutical industry[edit]

The pharmaceutical industry emitted 52 megatonnes of carbon dioxide into the atmosphere in 2015. This is more than the automotive sector. However this analysis used the combined emissions of conglomerates which produce pharmaceuticals as well as other products.[49]

Plastic[edit]

Plastic is produced mainly from fossil fuels. Plastic manufacturing is estimated to use 8 percent of yearly global oil production. The EPA estimates[50] as many as five mass units of carbon dioxide are emitted for each mass unit of polyethylene terephthalate (PET) produced—the type of plastic most commonly used for beverage bottles,[51] the transportation produce greenhouse gases also.[52] Plastic waste emits carbon dioxide when it degrades. In 2018 research claimed that some of the most common plastics in the environment release the greenhouse gases methane and ethylene when exposed to sunlight in an amount that can affect the earth climate.[53][54]

From the other side, if it is placed in a landfill, it becomes a carbon sink[55] although biodegradable plastics have caused methane emissions.[56] Due to the lightness of plastic versus glass or metal, plastic may reduce energy consumption. For example, packaging beverages in PET plastic rather than glass or metal is estimated to save 52% in transportation energy, if the glass or metal package is single-use, of course.

In 2019 a new report "Plastic and Climate" was published. According to the report plastic will contribute greenhouse gases in the equivalent of 850 million tonnes of carbon dioxide (CO2) to the atmosphere in 2019. In current trend, annual emissions will grow to 1.34 billion tonnes by 2030. By 2050 plastic could emit 56 billion tonnes of Greenhouse gas emissions, as much as 14 percent of the Earth's remaining carbon budget.[57] The report says that only solutions which involve a reduction in consumption can solve the problem, while others like biodegradable plastic, ocean cleanup, using renewable energy in plastic industry can do little, and in some cases may even worsen it.[58]

Sanitation sector[edit]

Wastewater as well as sanitation systems are known to contribute to greenhouse-gas emissions (GHG) mainly through the breakdown of excreta during the treatment process. This results in the generation of methane gas, that is then released into the environment. Emissions from the sanitation and wastewater sector have been focused mainly on treatment systems, particularly treatment plants, and this accounts for the bulk of the carbon footprint for the sector.[59]

In as much as climate impacts from wastewater and sanitation systems present global risks, low-income countries experience greater risks in many cases. In recent years,[when?] attention to adaptation needs within the sanitation sector is just beginning to gain momentum.[60]

Tourism[edit]

According to UNEP, global tourism is closely linked to climate change. Tourism is a significant contributor to the increasing concentrations of greenhouse gases in the atmosphere. Tourism accounts for about 50% of traffic movements.[citation needed] Rapidly expanding air traffic contributes about 2.5% of the production of CO
2
. The number of international travelers is expected to increase from 594 million in 1996 to 1.6 billion by 2020, adding greatly to the problem unless steps are taken to reduce emissions.[61][needs update]

Trucking and haulage[edit]

The trucking and haulage industry plays a part in production of CO
2
, contributing around 20% of the UK's total carbon emissions a year, with only the energy industry having a larger impact at around 39%.[62][globalize] Average carbon emissions within the haulage industry are falling—in the thirty-year period from 1977 to 2007, the carbon emissions associated with a 200-mile journey fell by 21 percent.[63][globalize]

By socio-economic class[edit]

Fueled by the consumptive lifestyle of wealthy people, the wealthiest 5% of the global population has been responsible for 37% of the absolute increase in greenhouse gas emissions worldwide. Almost half of the increase in absolute global emissions has been caused by the richest 10% of the population.[64]

By energy source[edit]

Life cycle CO2 equivalent (including albedo effect) from selected electricity supply technologies according to IPCC 2014.[65][66] Arranged by decreasing median (gCO
2
eq/kWh) values.
Technology Min. Median Max.
Currently commercially available technologies
CoalPC 740 820 910
Gascombined cycle 410 490 650
Biomass – Dedicated 130 230 420
Solar PV – Utility scale 18 48 180
Solar PV – rooftop 26 41 60
Geothermal 6.0 38 79
Concentrated solar power 8.8 27 63
Hydropower 1.0 24 22001
Wind Offshore 8.0 12 35
Nuclear 3.7 12 110
Wind Onshore 7.0 11 56
Pre‐commercial technologies
Ocean (Tidal and wave) 5.6 17 28
1 see also environmental impact of reservoirs#Greenhouse gases.

Relative CO
2
emission from various fuels
[edit]

One liter of gasoline, when used as a fuel, produces 2.32 kg (about 1300 liters or 1.3 cubic meters) of carbon dioxide, a greenhouse gas. One US gallon produces 19.4 lb (1,291.5 gallons or 172.65 cubic feet).[67][68][69]

Mass of carbon dioxide emitted per quantity of energy for various fuels[70]
Fuel name CO
2

emitted
(lbs/106 Btu)
CO
2

emitted
(g/MJ)
CO
2

emitted
(g/kWh)
Natural gas 117 50.30 181.08
Liquefied petroleum gas 139 59.76 215.14
Propane 139 59.76 215.14
Aviation gasoline 153 65.78 236.81
Automobile gasoline 156 67.07 241.45
Kerosene 159 68.36 246.10
Fuel oil 161 69.22 249.19
Tires/tire derived fuel 189 81.26 292.54
Wood and wood waste 195 83.83 301.79
Coal (bituminous) 205 88.13 317.27
Coal (sub-bituminous) 213 91.57 329.65
Coal (lignite) 215 92.43 332.75
Petroleum coke 225 96.73 348.23
Tar-sand bitumen [citation needed] [citation needed] [citation needed]
Coal (anthracite) 227 97.59 351.32

Regional and national attribution of emissions[edit]

From land-use change[edit]

Refer to caption.
Greenhouse gas emissions from agriculture, forestry and other land use, 1970–2010.

Land-use change, e.g., the clearing of forests for agricultural use, can affect the concentration of greenhouse gases in the atmosphere by altering how much carbon flows out of the atmosphere into carbon sinks.[71] Accounting for land-use change can be understood as an attempt to measure "net" emissions, i.e., gross emissions from all sources minus the removal of emissions from the atmosphere by carbon sinks (Banuri et al., 1996, pp. 92–93).[20]

There are substantial uncertainties in the measurement of net carbon emissions.[72] Additionally, there is controversy over how carbon sinks should be allocated between different regions and over time (Banuri et al., 1996, p. 93).[20] For instance, concentrating on more recent changes in carbon sinks is likely to favour those regions that have deforested earlier, e.g., Europe.

Greenhouse gas intensity[edit]

Carbon intensity of GDP (using PPP) for different regions, 1982–2011

Greenhouse gas intensity is a ratio between greenhouse gas emissions and another metric, e.g., gross domestic product (GDP) or energy use. The terms "carbon intensity" and "emissions intensity" are also sometimes used.[73] Emission intensities may be calculated using market exchange rates (MER) or purchasing power parity (PPP) (Banuri et al., 1996, p. 96).[20] Calculations based on MER show large differences in intensities between developed and developing countries, whereas calculations based on PPP show smaller differences.

Cumulative and historical emissions[edit]

Cumulative energy-related CO
2
emissions between the years 1850–2005 grouped into low-income, middle-income, high-income, the EU-15, and the OECD countries.
Cumulative energy-related CO
2
emissions between the years 1850–2005 for individual countries.
Map of cumulative per capita anthropogenic atmospheric CO
2
emissions by country. Cumulative emissions include land use change, and are measured between the years 1950 and 2000.
Regional trends in annual CO
2
emissions from fuel combustion between 1971 and 2009.
Regional trends in annual per capita CO
2
emissions from fuel combustion between 1971 and 2009.

Cumulative anthropogenic (i.e., human-emitted) emissions of CO
2
from fossil fuel use are a major cause of global warming,[74] and give some indication of which countries have contributed most to human-induced climate change.[75]:15 Overall, developed countries accounted for 83.8% of industrial CO
2
emissions over this time period, and 67.8% of total CO
2
emissions. Developing countries accounted for industrial CO
2
emissions of 16.2% over this time period, and 32.2% of total CO
2
emissions. The estimate of total CO
2
emissions includes biotic carbon emissions, mainly from deforestation. Banuri et al. (1996, p. 94)[20] calculated per capita cumulative emissions based on then-current population. The ratio in per capita emissions between industrialized countries and developing countries was estimated at more than 10 to 1.

Including biotic emissions brings about the same controversy mentioned earlier regarding carbon sinks and land-use change (Banuri et al., 1996, pp. 93–94).[20] The actual calculation of net emissions is very complex, and is affected by how carbon sinks are allocated between regions and the dynamics of the climate system.

Non-OECD countries accounted for 42% of cumulative energy-related CO
2
emissions between 1890 and 2007.[76]:179–80 Over this time period, the US accounted for 28% of emissions; the EU, 23%; Russia, 11%; China, 9%; other OECD countries, 5%; Japan, 4%; India, 3%; and the rest of the world, 18%.[76]:179–80

Changes since a particular base year[edit]

Between 1970 and 2004, global growth in annual CO
2
emissions was driven by North America, Asia, and the Middle East.[77] The sharp acceleration in CO
2
emissions since 2000 to more than a 3% increase per year (more than 2 ppm per year) from 1.1% per year during the 1990s is attributable to the lapse of formerly declining trends in carbon intensity of both developing and developed nations. China was responsible for most of global growth in emissions during this period. Localised plummeting emissions associated with the collapse of the Soviet Union have been followed by slow emissions growth in this region due to more efficient energy use, made necessary by the increasing proportion of it that is exported.[33] In comparison, methane has not increased appreciably, and N
2
O
by 0.25% y−1.

Using different base years for measuring emissions has an effect on estimates of national contributions to global warming.[75]:17–18[78] This can be calculated by dividing a country's highest contribution to global warming starting from a particular base year, by that country's minimum contribution to global warming starting from a particular base year. Choosing between base years of 1750, 1900, 1950, and 1990 has a significant effect for most countries.[75]:17–18 Within the G8 group of countries, it is most significant for the UK, France and Germany. These countries have a long history of CO
2
emissions (see the section on Cumulative and historical emissions).

Annual emissions[edit]

Annual per capita emissions in the industrialized countries are typically as much as ten times the average in developing countries.[10]:144 Due to China's fast economic development, its annual per capita emissions are quickly approaching the levels of those in the Annex I group of the Kyoto Protocol (i.e., the developed countries excluding the US).[79] Other countries with fast growing emissions are South Korea, Iran, and Australia (which apart from the oil rich Persian Gulf states, now has the highest per capita emission rate in the world). On the other hand, annual per capita emissions of the EU-15 and the US are gradually decreasing over time.[79] Emissions in Russia and Ukraine have decreased fastest since 1990 due to economic restructuring in these countries.[80]

Energy statistics for fast growing economies are less accurate than those for the industrialized countries. For China's annual emissions in 2008, the Netherlands Environmental Assessment Agency estimated an uncertainty range of about 10%.[79]

The greenhouse gas footprint refers to the emissions resulting from the creation of products or services. It is more comprehensive than the commonly used carbon footprint, which measures only carbon dioxide, one of many greenhouse gases.

2015 was the first year to see both total global economic growth and a reduction of carbon emissions.[81]

Top emitter countries[edit]

The top 40 countries emitting all greenhouse gases, showing both that derived from all sources including land clearance and forestry and also the CO2 component excluding those sources. Per capita figures are included. "World Resources Institute data".. Note that Indonesia and Brazil show very much higher than on graphs simply showing fossil fuel use.

Annual[edit]

In 2019, China, the United States, India, the EU27+UK, Russia and Japan - the world’s largest CO2 emitters - together accounted for 51% of the population, 62.5% of global Gross Domestic Product, 62% of total global fossil fuel consumption and emitted 67% of total global fossil CO2. Emissions from these five countries and the EU28 show different changes in 2019 compared to 2018: the largest relative increase is found for China (+3.4%), followed by India (+1.6%). On the contrary, the EU27+UK (-3.8%), the United States (-2.6%), Japan (-2.1%) and Russia (-0.8%) reduced their fossil CO2 emissions.[82]

2019 Fossil CO2 emissions by country[82]
Country total emissions
(Mton)
Share
(%)
per capita
(ton)
per GDP
(ton/k$)
GLOBAL TOTAL 38,016.57 100.00 4.93 0.29
 China 11,535.20 30.34 8.12 0.51
 United States 5,107.26 13.43 15.52 0.25
EU27+UK 3,303.97 8.69 6.47 0.14
 India 2,597.36 6.83 1.90 0.28
 Russia 1,792.02 4.71 12.45 0.45
 Japan 1,153.72 3.03 9.09 0.22
International Shipping 730.26 1.92 - -
 Germany 702.60 1.85 8.52 0.16
 Iran 701.99 1.85 8.48 0.68
 South Korea 651.87 1.71 12.70 0.30
International Aviation 627.48 1.65 - -
 Indonesia 625.66 1.65 2.32 0.20
 Saudi Arabia 614.61 1.62 18.00 0.38
 Canada 584.85 1.54 15.69 0.32
 South Africa 494.86 1.30 8.52 0.68
 Mexico 485.00 1.28 3.67 0.19
 Brazil 478.15 1.26 2.25 0.15
 Australia 433.38 1.14 17.27 0.34
 Turkey 415.78 1.09 5.01 0.18
 United Kingdom 364.91 0.96 5.45 0.12
 Italy,  San Marino and the Holy See 331.56 0.87 5.60 0.13
 Poland 317.65 0.84 8.35 0.25
 France and  Monaco 314.74 0.83 4.81 0.10
 Vietnam 305.25 0.80 3.13 0.39
 Kazakhstan 277.36 0.73 14.92 0.57
 Taiwan 276.78 0.73 11.65 0.23
 Thailand 275.06 0.72 3.97 0.21
 Spain and Andorra 259.31 0.68 5.58 0.13
 Egypt 255.37 0.67 2.52 0.22
 Malaysia 248.83 0.65 7.67 0.27
 Pakistan 223.63 0.59 1.09 0.22
 United Arab Emirates 222.61 0.59 22.99 0.34
 Argentina 199.41 0.52 4.42 0.20
 Iraq 197.61 0.52 4.89 0.46
 Ukraine 196.40 0.52 4.48 0.36
 Algeria 180.57 0.47 4.23 0.37
 Netherlands 156.41 0.41 9.13 0.16
 Philippines 150.64 0.40 1.39 0.16
 Bangladesh 110.16 0.29 0.66 0.14
 Venezuela 110.06 0.29 3.36 0.39
 Qatar 106.53 0.28 38.82 0.41
 Czechia 105.69 0.28 9.94 0.25
 Belgium 104.41 0.27 9.03 0.18
 Nigeria 100.22 0.26 0.50 0.10
 Kuwait 98.95 0.26 23.29 0.47
 Uzbekistan 94.99 0.25 2.90 0.40
 Oman 92.78 0.24 18.55 0.67
 Turkmenistan 90.52 0.24 15.23 0.98
 Chile 89.89 0.24 4.90 0.20
 Colombia 86.55 0.23 1.74 0.12
 Romania 78.63 0.21 4.04 0.14
 Morocco 73.91 0.19 2.02 0.27
 Austria 72.36 0.19 8.25 0.14
 Serbia and Montenegro 70.69 0.19 7.55 0.44
 Israel and  Palestine 68.33 0.18 7.96 0.18
 Belarus 66.34 0.17 7.03 0.37
 Greece 65.57 0.17 5.89 0.20
 Peru 56.29 0.15 1.71 0.13
 Singapore 53.37 0.14 9.09 0.10
 Hungary 53.18 0.14 5.51 0.17
 Libya 52.05 0.14 7.92 0.51
 Portugal 48.47 0.13 4.73 0.14
 Myanmar}} 48.31 0.13 0.89 0.17
 Norway 47.99 0.13 8.89 0.14
 Sweden 44.75 0.12 4.45 0.08
 Hong Kong 44.02 0.12 5.88 0.10
 Finland 43.41 0.11 7.81 0.16
 Bulgaria 43.31 0.11 6.20 0.27
 North Korea 42.17 0.11 1.64 0.36
 Ecuador 40.70 0.11 2.38 0.21
  Switzerland and  Liechtenstein 39.37 0.10 4.57 0.07
 New Zealand 38.67 0.10 8.07 0.18
 Ireland 36.55 0.10 7.54 0.09
 Slovakia 35.99 0.09 6.60 0.20
 Azerbaijan 35.98 0.09 3.59 0.25
 Mongolia 35.93 0.09 11.35 0.91
 Bahrain 35.44 0.09 21.64 0.48
 Bosnia and Herzegovina 33.50 0.09 9.57 0.68
 Trinidad and Tobago 32.74 0.09 23.81 0.90
 Tunisia 32.07 0.08 2.72 0.25
 Denmark 31.12 0.08 5.39 0.09
 Cuba 31.04 0.08 2.70 0.11
 Syria 29.16 0.08 1.58 1.20
 Jordan 28.34 0.07 2.81 0.28
 Sri Lanka 27.57 0.07 1.31 0.10
 Lebanon 27.44 0.07 4.52 0.27
 Dominican Republic 27.28 0.07 2.48 0.14
 Angola 25.82 0.07 0.81 0.12
 Bolivia 24.51 0.06 2.15 0.24
 Sudan and  South Sudan 22.57 0.06 0.40 0.13
 Guatemala 21.20 0.06 1.21 0.15
 Kenya 19.81 0.05 0.38 0.09
 Croatia 19.12 0.05 4.62 0.16
 Estonia 18.50 0.05 14.19 0.38
 Ethiopia 18.25 0.05 0.17 0.07
 Ghana 16.84 0.04 0.56 0.10
 Cambodia 16.49 0.04 1.00 0.23
 New Caledonia 15.66 0.04 55.25 1.67
 Slovenia 15.37 0.04 7.38 0.19
   Nepal 15.02 0.04 0.50 0.15
 Lithuania 13.77 0.04 4.81 0.13
 Côte d’Ivoire 13.56 0.04 0.53 0.10
 Georgia 13.47 0.04 3.45 0.24
 Tanzania 13.34 0.04 0.22 0.09
 Kyrgyzstan 11.92 0.03 1.92 0.35
 Panama 11.63 0.03 2.75 0.09
 Afghanistan 11.00 0.03 0.30 0.13
 Yemen 10.89 0.03 0.37 0.17
 Zimbabwe 10.86 0.03 0.63 0.26
 Honduras 10.36 0.03 1.08 0.19
 Cameroon 10.10 0.03 0.40 0.11
 Senegal 9.81 0.03 0.59 0.18
 Luxembourg 9.74 0.03 16.31 0.14
 Mozambique 9.26 0.02 0.29 0.24
 Moldova 9.23 0.02 2.29 0.27
 Costa Rica 8.98 0.02 1.80 0.09
 North Macedonia 8.92 0.02 4.28 0.26
 Tajikistan 8.92 0.02 0.96 0.28
 Paraguay 8.47 0.02 1.21 0.09
 Latvia 8.38 0.02 4.38 0.14
 Benin 8.15 0.02 0.69 0.21
 Mauritania 7.66 0.02 1.64 0.33
 Zambia 7.50 0.02 0.41 0.12
 Jamaica 7.44 0.02 2.56 0.26
 Cyprus 7.41 0.02 6.19 0.21
 El Salvador 7.15 0.02 1.11 0.13
 Botswana 7.04 0.02 2.96 0.17
 Brunei 7.02 0.02 15.98 0.26
 Laos 6.78 0.02 0.96 0.12
 Uruguay 6.56 0.02 1.89 0.09
 Armenia 5.92 0.02 2.02 0.15
 Curaçao 5.91 0.02 36.38 1.51
 Nicaragua 5.86 0.02 0.92 0.17
 Congo 5.80 0.02 1.05 0.33
 Albania 5.66 0.01 1.93 0.14
 Uganda 5.34 0.01 0.12 0.06
 Namibia 4.40 0.01 1.67 0.18
 Mauritius 4.33 0.01 3.41 0.15
 Madagascar 4.20 0.01 0.16 0.09
 Papua New Guinea 4.07 0.01 0.47 0.11
 Iceland 3.93 0.01 11.53 0.19
 Puerto Rico 3.91 0.01 1.07 0.04
 Barbados 3.83 0.01 13.34 0.85
 Burkina Faso 3.64 0.01 0.18 0.08
 Haiti 3.58 0.01 0.32 0.18
 Gabon 3.48 0.01 1.65 0.11
 Equatorial Guinea 3.47 0.01 2.55 0.14
 Réunion 3.02 0.01 3.40 -
 Democratic Republic of the Congo 2.98 0.01 0.03 0.03
 Guinea 2.92 0.01 0.22 0.09
 Togo 2.85 0.01 0.35 0.22
 Bahamas 2.45 0.01 6.08 0.18
 Niger 2.36 0.01 0.10 0.08
 Bhutan 2.12 0.01 2.57 0.24
 Suriname 2.06 0.01 3.59 0.22
 Martinique 1.95 0.01 5.07 -
 Guadeloupe 1.87 0.00 4.17 -
 Malawi 1.62 0.00 0.08 0.08
 Guyana 1.52 0.00 1.94 0.20
 Sierra Leone 1.40 0.00 0.18 0.10
 Fiji 1.36 0.00 1.48 0.11
 Palau 1.33 0.00 59.88 4.09
 Macao 1.27 0.00 1.98 0.02
 Liberia 1.21 0.00 0.24 0.17
 Rwanda 1.15 0.00 0.09 0.04
 Eswatini 1.14 0.00 0.81 0.11
 Djibouti 1.05 0.00 1.06 0.20
 Seychelles 1.05 0.00 10.98 0.37
 Malta 1.04 0.00 2.41 0.05
 Mali 1.03 0.00 0.05 0.02
 Cabo Verde 1.02 0.00 1.83 0.26
 Somalia 0.97 0.00 0.06 0.57
 Maldives 0.91 0.00 2.02 0.09
 Chad 0.89 0.00 0.06 0.04
 Aruba 0.78 0.00 7.39 0.19
 Eritrea 0.75 0.00 0.14 0.08
 Lesotho 0.75 0.00 0.33 0.13
 Gibraltar 0.69 0.00 19.88 0.45
 French Guiana 0.61 0.00 2.06 -
 French Polynesia 0.60 0.00 2.08 0.10
 The Gambia 0.59 0.00 0.27 0.11
 Greenland 0.54 0.00 9.47 0.19
 Antigua and Barbuda 0.51 0.00 4.90 0.24
 Central African Republic 0.49 0.00 0.10 0.11
 Guinea-Bissau 0.44 0.00 0.22 0.11
 Cayman Islands 0.40 0.00 6.38 0.09
 Timor-Leste 0.38 0.00 0.28 0.10
 Belize 0.37 0.00 0.95 0.14
 Bermuda 0.35 0.00 5.75 0.14
 Burundi 0.34 0.00 0.03 0.04
 Saint Lucia 0.30 0.00 1.65 0.11
 Western Sahara 0.30 0.00 0.51 -
 Grenada 0.23 0.00 2.10 0.12
 Comoros 0.21 0.00 0.25 0.08
 Saint Kitts and Nevis 0.19 0.00 3.44 0.14
 São Tomé and Príncipe 0.16 0.00 0.75 0.19
 Saint Vincent and the Grenadines 0.15 0.00 1.32 0.11
 Samoa 0.14 0.00 0.70 0.11
 Solomon Islands 0.14 0.00 0.22 0.09
 Tonga 0.13 0.00 1.16 0.20
 Turks and Caicos Islands 0.13 0.00 3.70 0.13
 British Virgin Islands 0.12 0.00 3.77 0.17
 Dominica 0.10 0.00 1.38 0.12
 Vanuatu 0.09 0.00 0.30 0.09
 Saint Pierre and Miquelon 0.06 0.00 9.72 -
 Cook Islands 0.04 0.00 2.51 -
 Falkland Islands 0.03 0.00 10.87 -
 Kiribati 0.03 0.00 0.28 0.13
 Anguilla 0.02 0.00 1.54 0.12
 Saint Helena,  Ascension and  Tristan da Cunha 0.02 0.00 3.87 -
Faroes 0.00 0.00 0.04 0.00
Per capita anthropogenic greenhouse gas emissions by country for the year 2000 including land-use change.
Global carbon dioxide emissions by country in 2015.
The C-Story of Human Civilization by PIK

Embedded emissions[edit]

One way of attributing greenhouse gas emissions is to measure the embedded emissions (also referred to as "embodied emissions") of goods that are being consumed. Emissions are usually measured according to production, rather than consumption.[83] For example, in the main international treaty on climate change (the UNFCCC), countries report on emissions produced within their borders, e.g., the emissions produced from burning fossil fuels.[76]:179[84]:1 Under a production-based accounting of emissions, embedded emissions on imported goods are attributed to the exporting, rather than the importing, country. Under a consumption-based accounting of emissions, embedded emissions on imported goods are attributed to the importing country, rather than the exporting, country.

Davis and Caldeira (2010)[84]:4 found that a substantial proportion of CO
2
emissions are traded internationally. The net effect of trade was to export emissions from China and other emerging markets to consumers in the US, Japan, and Western Europe. Based on annual emissions data from the year 2004, and on a per-capita consumption basis, the top-5 emitting countries were found to be (in tCO
2
per person, per year): Luxembourg (34.7), the US (22.0), Singapore (20.2), Australia (16.7), and Canada (16.6).[84]:5 [needs update]Carbon Trust research revealed that approximately 25% of all CO
2
emissions from human activities 'flow' (i.e., are imported or exported) from one country to another.[citation needed] Major developed economies were found to be typically net importers of embodied carbon emissions—with UK consumption emissions 34% higher than production emissions, and Germany (29%), Japan (19%) and the US (13%) also significant net importers of embodied emissions.[85][needs update]

Effect of policy[edit]

Governments have taken action to reduce greenhouse gas emissions to mitigate climate change. Assessments of policy effectiveness have included work by the Intergovernmental Panel on Climate Change,[86] International Energy Agency,[87][88] and United Nations Environment Programme.[89] Policies implemented by governments have included[90][91][92] national and regional targets to reduce emissions, promoting energy efficiency, and support for a renewable energy transition such as Solar energy as an effective use of renewable energy because solar uses energy from the sun and does not release pollutants into the air.

Countries and regions listed in Annex I of the United Nations Framework Convention on Climate Change (UNFCCC) (i.e., the OECD and former planned economies of the Soviet Union) are required to submit periodic assessments to the UNFCCC of actions they are taking to address climate change.[92]:3 Analysis by the UNFCCC (2011)[92]:8 suggested that policies and measures undertaken by Annex I Parties may have produced emission savings of 1.5 thousand Tg CO
2
-eq
in the year 2010, with most savings made in the energy sector. The projected emissions saving of 1.5 thousand Tg CO
2
-eq is measured against a hypothetical "baseline" of Annex I emissions, i.e., projected Annex I emissions in the absence of policies and measures. The total projected Annex I saving of 1.5 thousand CO
2
-eq does not include emissions savings in seven of the Annex I Parties.[92]:8

Due to COVID-19 pandemic, most countries lockdown. And during this period, all CO
2
emissions are decreased.

Projections[edit]

A wide range of projections of future emissions have been produced.[93] Unless energy policies changed substantially, the world will continue to depend on fossil fuels until 2025–2030.[94][95] Projections suggest that more than 80% of the world's energy will come from fossil fuels. This conclusion was based on "much evidence" and "high agreement" in the literature.[95] Projected annual energy-related CO
2
emissions in 2030 were 40–110% higher than in 2000, with two-thirds of the increase originating in developing countries.[95] Projected annual per capita emissions in developed country regions remained substantially lower (2.8–5.1 tonnes CO
2
) than those in developed country regions (9.6–15.1 tonnes CO
2
).[96] Projections consistently showed increase in annual world emissions of "Kyoto" gases,[97] measured in CO
2
-equivalent
) of 25–90% by 2030, compared to 2000.[95]

See also[edit]

References[edit]

  1. ^ "Climate Change Indicators in the United States". US Environmental Protection Agency (EPA). 2010. Figure 2. Global Greenhouse Gas Emissions by Sector, 1990–2005.
  2. ^ "Global Greenhouse Gas Emissions Data". U.S. Environmental Protection Agency. Retrieved 30 December 2019. The burning of coal, natural gas, and oil for electricity and heat is the largest single source of global greenhouse gas emissions.
  3. ^ "AR4 SYR Synthesis Report Summary for Policymakers – 2 Causes of change". ipcc.ch. Archived from the original on 28 February 2018. Retrieved 9 October 2015.
  4. ^ "Just 100 companies responsible for 71% of global emissions, study says". The Guardian. 2017-07-10. Retrieved 2021-04-09.
  5. ^ Gustin, Georgina (2017-07-09). "25 Fossil Fuel Producers Responsible for Half Global Emissions in Past 3 Decades". Inside Climate News. Retrieved 2021-05-04.
  6. ^ "Global Methane Emissions and Mitigation Opportunities" (PDF). Global Methane Initiative. 2020.
  7. ^ "Sources of methane emissions". International Energy Agency. 2020-08-20.
  8. ^ Reed, John (25 June 2020). "Thai rice farmers step up to tackle carbon footprint". Financial Times. Retrieved 25 June 2020.
  9. ^ Mann, Michael E. (2014-04-01). "Earth Will Cross the Climate Danger Threshold by 2036". Scientific American. Retrieved 30 August 2016.
  10. ^ a b c Grubb, M. (July–September 2003). "The economics of the Kyoto protocol" (PDF). World Economics. 4 (3). Archived from the original (PDF) on 17 July 2011.
  11. ^ Lerner & K. Lee Lerner, Brenda Wilmoth (2006). "Environmental issues: essential primary sources". Thomson Gale. Retrieved 11 September 2006.
  12. ^ a b "Kyoto Protocol". United Nations Framework Convention on Climate Change. Home > Kyoto Protocol.
  13. ^ a b King, D.; et al. (July 2011), "Copenhagen and Cancún", International climate change negotiations: Key lessons and next steps, Oxford: Smith School of Enterprise and the Environment, University of Oxford, p. 12, doi:10.4210/ssee.pbs.2011.0003 (inactive 19 January 2021), archived from the original on 1 August 2013CS1 maint: DOI inactive as of January 2021 (link) "PDF available" (PDF). Archived from the original (PDF) on 13 January 2012.
  14. ^ Johnston, Chris; Milman, Oliver; Vidal, John (15 October 2016). "Climate change: global deal reached to limit use of hydrofluorocarbons". The Guardian. Retrieved 2018-08-21.
  15. ^ "Climate change: 'Monumental' deal to cut HFCs, fastest growing greenhouse gases". BBC News. 15 October 2016. Retrieved 15 October 2016.
  16. ^ "Nations, Fighting Powerful Refrigerant That Warms Planet, Reach Landmark Deal". New York Times. 15 October 2016. Retrieved 15 October 2016.
  17. ^ a b "Selected Development Indicators" (PDF). World Development Report 2010: Development and Climate Change (PDF). Washington, DC: The International Bank for Reconstruction and Development / The World Bank. 2010. Tables A1 and A2. doi:10.1596/978-0-8213-7987-5. ISBN 978-0821379875.
  18. ^ a b Bader, N.; Bleichwitz, R. (2009). "Measuring urban greenhouse gas emissions: The challenge of comparability. S.A.P.I.EN.S. 2 (3)". Sapiens.revues.org. Retrieved 2011-09-11.
  19. ^ "Transcript: The Path Forward: Al Gore on Climate and the Economy". Washington Post. ISSN 0190-8286. Retrieved 2021-05-06.
  20. ^ a b c d e f g Banuri, T. (1996). Equity and social considerations. In: Climate change 1995: Economic and social dimensions of climate change. Contribution of Working Group III to the Second Assessment Report of the Intergovernmental Panel on Climate Change (J.P. Bruce et al. Eds.). This version: Printed by Cambridge University Press, Cambridge and New York. PDF version: IPCC website. doi:10.2277/0521568544. ISBN 978-0521568548.
  21. ^ World energy outlook 2007 edition – China and India insights. International Energy Agency (IEA), Head of Communication and Information Office, 9 rue de la Fédération, 75739 Paris Cedex 15, France. 2007. p. 600. ISBN 978-9264027305. Archived from the original on 15 June 2010. Retrieved 4 May 2010.
  22. ^ Holtz-Eakin, D. (1995). "Stoking the fires? CO
    2
    emissions and economic growth"
    (PDF). Journal of Public Economics. 57 (1): 85–101. doi:10.1016/0047-2727(94)01449-X. S2CID 152513329.
  23. ^ Dodman, David (April 2009). "Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories". Environment and Urbanization. 21 (1): 185–201. doi:10.1177/0956247809103016. ISSN 0956-2478. S2CID 154669383.
  24. ^ "Climate Change 2001: Working Group I: The Scientific Basis: figure 6-6". Archived from the original on 14 June 2006. Retrieved 1 May 2006.
  25. ^ "The present carbon cycle – Climate Change". Grida.no. Retrieved 2010-10-16.
  26. ^ a b Couplings Between Changes in the Climate System and Biogeochemistry (PDF). Retrieved 13 May 2008. in IPCC AR4 WG1 (2007)
  27. ^ IPCC (2007d). "6.1 Observed changes in climate and their effects, and their causes". 6 Robust findings, key uncertainties. Climate Change 2007: Synthesis Report. A Contribution of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Geneva: IPCC. Archived from the original on 6 November 2012. Retrieved 4 September 2012.
  28. ^ a b "6.2 Drivers and projections of future climate changes and their impacts". 6 Robust findings, key uncertainties. Climate Change 2007: Synthesis Report. A Contribution of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Geneva, Switzerland: IPCC. 2007d. Archived from the original on 6 November 2012. Retrieved 4 September 2012.
  29. ^ Armarego-Marriott, Tegan (May 2020). "Climate or biodiversity?". Nature Climate Change. 10 (5): 385. doi:10.1038/s41558-020-0780-6. ISSN 1758-6798. S2CID 217192647.
  30. ^ "3.3.1 Impacts on systems and sectors". 3 Climate change and its impacts in the near and long term under different scenarios. Climate Change 2007: Synthesis Report. A Contribution of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Geneva: IPCC. 2007d. Archived from the original on 3 November 2018. Retrieved 31 August 2012.
  31. ^ Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. (2006). Livestock's long shadow (Report). FAO Livestock, Environment and Development (LEAD) Initiative.
  32. ^ Ciais, Phillipe; Sabine, Christopher; et al. "Carbon and Other Biogeochemical Cycles" (PDF). In Stocker Thomas F.; et al. (eds.). Climate Change 2013: The Physical Science Basis. IPCC. p. 473.
  33. ^ a b Raupach, M.R.; et al. (2007). "Global and regional drivers of accelerating CO
    2
    emissions"
    (PDF). Proc. Natl. Acad. Sci. USA. 104 (24): 10288–93. Bibcode:2007PNAS..10410288R. doi:10.1073/pnas.0700609104. PMC 1876160. PMID 17519334.
  34. ^ "Global Greenhouse Gas Emissions by Sector". EarthCharts. Retrieved 15 March 2020.
  35. ^ Michael Clark; Tilman, David (November 2014). "Global diets link environmental sustainability and human health". Nature. 515 (7528): 518–522. Bibcode:2014Natur.515..518T. doi:10.1038/nature13959. ISSN 1476-4687. PMID 25383533. S2CID 4453972.
  36. ^ a b "Climate Watch". www.climatewatchdata.org. Retrieved 2020-03-06.
  37. ^ IEA, CO2 Emissions from Fuel Combustion 2018: Highlights (Paris: International Energy Agency, 2018) p.98
  38. ^ IEA, CO2 Emissions from Fuel Combustion 2018: Highlights (Paris: International Energy Agency, 2018) p.101
  39. ^ "The World's Biggest Emitter of Greenhouse Gases". Bloomberg.com. 2020-03-17. Retrieved 2020-12-29.
  40. ^ Davidson, Jordan (4 September 2020). "Aviation Accounts for 3.5% of Global Warming Caused by Humans, New Research Says". Ecowatch. Retrieved 6 September 2020.
  41. ^ a b Ürge-Vorsatz, Diana; Khosla, Radhika; Bernhardt, Rob; Chan, Yi Chieh; Vérez, David; Hu, Shan; Cabeza, Luisa F. (2020). "Advances Toward a Net-Zero Global Building Sector". Annual Review of Environment and Resources. 45: 227–269. doi:10.1146/annurev-environ-012420-045843.
  42. ^ "Why the building sector?". Architecture 2020. Retrieved 1 April 2021.
  43. ^ "Infographic: The Carbon Footprint of the Internet – ClimateCare". Retrieved 2020-09-17.
  44. ^ "The myth of the green cloud". European Investment Bank. Retrieved 2020-09-17.
  45. ^ "Working from home is erasing carbon emissions -- but for how long?". Grist. 2020-05-19. Retrieved 2021-04-04.
  46. ^ "March: Tracking the decoupling of electricity demand and associated CO2 emissions". www.iea.org. Retrieved 2019-09-21.
  47. ^ "Emissions". www.iea.org. Archived from the original on 12 August 2019. Retrieved 2019-09-21.
  48. ^ "We have too many fossil-fuel power plants to meet climate goals". Environment. 2019-07-01. Retrieved 2019-09-21.
  49. ^ Belkhir, Lotfi. "Big Pharma emits more greenhouse gases than the automotive industry". The Conversation. Retrieved 19 July 2019.
  50. ^ "The Link Between Plastic Use and Climate Change: Nitty-gritty". stanfordmag.org. 2009. Retrieved March 5, 2021. ... According to the EPA, approximately one ounce of carbon dioxide is emitted for each ounce of polyethylene (PET) produced. PET is the type of plastic most commonly used for beverage bottles. ...'
  51. ^ Glazner, Elizabeth. "Plastic Pollution and Climate Change". Plastic Pollution Coalition. Plastic Pollution Coalition. Retrieved 6 August 2018.
  52. ^ Blue, Marie-Luise. "What Is the Carbon Footprint of a Plastic Bottle?". Sciencing. Leaf Group Ltd. Retrieved 6 August 2018.
  53. ^ Royer, Sarah-Jeanne; Ferrón, Sara; Wilson, Samuel T.; Karl, David M. (1 August 2018). "Production of methane and ethylene from plastic in the environment". PLOS ONE. 13 (Plastic, Climate Change): e0200574. Bibcode:2018PLoSO..1300574R. doi:10.1371/journal.pone.0200574. PMC 6070199. PMID 30067755.
  54. ^ Rosane, Olivia (2 August 2018). "Study Finds New Reason to Ban Plastic: It Emits Methane in the Sun" (Plastic, Climate Change). Ecowatch. Retrieved 6 August 2018.
  55. ^ EPA (2012). "Landfilling" (PDF).
  56. ^ Levis, James W.; Barlaz, Morton A. (July 2011). "Is Biodegradability a Desirable Attribute for Discarded Solid Waste? Perspectives from a National Landfill Greenhouse Gas Inventory Model". Environmental Science & Technology. 45 (13): 5470–5476. Bibcode:2011EnST...45.5470L. doi:10.1021/es200721s. PMID 21615182.
  57. ^ "Sweeping New Report on Global Environmental Impact of Plastics Reveals Severe Damage to Climate". Center for International Environmental Law (CIEL). Retrieved 16 May 2019.
  58. ^ Plastic & Climate The Hidden Costs of a Plastic Planet (PDF). Center for International Environmental Law, Environmental Integrity Project, FracTracker Alliance, Global Alliance for Incinerator Alternatives, 5 Gyres, and Break Free From Plastic. May 2019. pp. 82–85. Retrieved 20 May 2019.
  59. ^ Dickin, Sarah; Bayoumi, Moustafa; Giné, Ricard; Andersson, Kim; Jiménez, Alejandro (2020-05-25). "Sustainable sanitation and gaps in global climate policy and financing". NPJ Clean Water. 3 (1): 1–7. doi:10.1038/s41545-020-0072-8. ISSN 2059-7037. S2CID 218865175.
  60. ^ World Health Organisation (1 July 2019). "Climate, Sanitation and Health" (PDF). WHO Discussion Paper.
  61. ^ "Environmental Impacts of Tourism – Global Level". UNEP.
  62. ^ "A Cheaper and More Efficient Freight Industry In and Out of the UK". freightbestpractice.org.uk. Retrieved 13 September 2015.[permanent dead link]
  63. ^ Newbold, Richard (19 May 2014), A practical guide for fleet operators, returnloads.net, retrieved 2017-01-20.
  64. ^ Rapid Transition Alliance, 13 Apr. 2021 "Cambridge Sustainability Commission Report on Scaling Behaviour Change" p. 20
  65. ^ "IPCC Working Group III – Mitigation of Climate Change, Annex III: Technology - specific cost and performance parameters - Table A.III.2 (Emissions of selected electricity supply technologies (gCO 2eq/kWh))" (PDF). IPCC. 2014. p. 1335. Retrieved 14 December 2018. CS1 maint: discouraged parameter (link)
  66. ^ "IPCC Working Group III – Mitigation of Climate Change, Annex II Metrics and Methodology - A.II.9.3 (Lifecycle greenhouse gas emissions)" (PDF). pp. 1306–1308.
  67. ^ "Greenhouse Gas Emissions from a Typical Passenger Vehicle" (PDF). Epa.gov. US Environment Protection Agency. Retrieved 2011-09-11.
  68. ^ Engber, Daniel (1 November 2006). "How gasoline becomes CO
    2
    , Slate Magazine"
    . Slate Magazine. Retrieved 2011-09-11.
  69. ^ "Volume calculation for carbon dioxide". Icbe.com. Retrieved 2011-09-11.
  70. ^ "Voluntary Reporting of Greenhouse Gases Program". Energy Information Administration. Archived from the original on 1 November 2004. Retrieved 21 August 2009.
  71. ^ B. Metz; O.R. Davidson; P.R. Bosch; R. Dave; L.A. Meyer (eds.), Annex I: Glossary J–P, archived from the original on 3 May 2010
  72. ^ Markandya, A. (2001). "7.3.5 Cost Implications of Alternative GHG Emission Reduction Options and Carbon Sinks". In B. Metz; et al. (eds.). Costing Methodologies. Climate Change 2001: Mitigation. Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Print version: Cambridge University Press, Cambridge and New York. This version: GRID-Arendal website. doi:10.2277/0521015022 (inactive 19 January 2021). ISBN 978-0521015028. Archived from the original on 5 August 2011. Retrieved 11 April 2011.CS1 maint: DOI inactive as of January 2021 (link)
  73. ^ Herzog, T. (November 2006). Yamashita, M.B. (ed.). Target: intensity – an analysis of greenhouse gas intensity targets (PDF). World Resources Institute. ISBN 978-1569736388. Retrieved 2011-04-11.
  74. ^ Botzen, W.J.W.; et al. (2008). "Cumulative CO
    2
    emissions: shifting international responsibilities for climate debt". Climate Policy. 8 (6): 570. doi:10.3763/cpol.2008.0539. S2CID 153972794.
  75. ^ a b c Höhne, N.; et al. (24 September 2010). "Contributions of individual countries' emissions to climate change and their uncertainty" (PDF). Climatic Change. 106 (3): 359–91. doi:10.1007/s10584-010-9930-6. S2CID 59149563. Archived from the original (PDF) on 26 April 2012.
  76. ^ a b c World Energy Outlook 2009 (PDF), Paris: International Energy Agency (IEA), 2009, pp. 179–80, ISBN 978-9264061309, archived from the original (PDF) on 24 September 2015, retrieved 27 December 2011
  77. ^ "Introduction", 1.3.1 Review of the last three decades, archived from the original on 21 January 2012, retrieved 14 January 2012 in Rogner et al. (2007)
  78. ^ The cited paper uses the term "start date" instead of "base year."
  79. ^ a b c "Global CO
    2
    emissions: annual increase halves in 2008"
    . Netherlands Environmental Assessment Agency (PBL) website. 25 June 2009. Archived from the original on 19 December 2010. Retrieved 2010-05-05.
  80. ^ "Global Carbon Mechanisms: Emerging lessons and implications (CTC748)". Carbon Trust. March 2009. p. 24. Retrieved 2010-03-31.
  81. ^ Vaughan, Adam (2015-12-07). "Global emissions to fall for first time during a period of economic growth". The Guardian. ISSN 0261-3077. Retrieved 2016-12-23.
  82. ^ a b "Fossil CO2 emissions of all world countries - 2020 report". EDGAR - Emissions Database for Global Atmospheric Research.  This article incorporates text available under the CC BY 4.0 license.
  83. ^ Helm, D.; et al. (10 December 2007). Too Good To Be True? The UK's Climate Change Record (PDF). p. 3. Archived from the original (PDF) on 15 July 2011.
  84. ^ a b c Davis, S.J.; K. Caldeira (8 March 2010). "Consumption-based Accounting of CO
    2
    Emissions"
    (PDF). Proceedings of the National Academy of Sciences of the United States of America. 107 (12): 5687–5692. Bibcode:2010PNAS..107.5687D. doi:10.1073/pnas.0906974107. PMC 2851800. PMID 20212122. Retrieved 2011-04-18.
  85. ^ "International Carbon Flows". Carbon Trust. May 2011. Archived from the original on 1 August 2018. Retrieved 12 November 2012.
  86. ^ e.g., Gupta et al. (2007) assessed the scientific literature on climate change mitigation policy: Gupta, S.; et al. Policies, instruments, and co-operative arrangements. Archived from the original on 28 July 2012. Retrieved 4 September 2012. in Rogner et al. (2007)
  87. ^ "Energy Policy". Paris: International Energy Agency (IEA). 2012. Archived from the original on 8 September 2012. Retrieved 4 September 2012.
  88. ^ "IEA Publications on 'Energy Policy'". Paris: Organization for Economic Co-operation and Development (OECD) / International Energy Agency (IEA). 2012. Archived from the original on 12 June 2012. Retrieved 31 May 2012.
  89. ^ Bridging the Emissions Gap: A UNEP Synthesis Report (PDF), Nairobi, Kenya: United Nations Environment Programme (UNEP), November 2011, ISBN 978-9280732290 UNEP Stock Number: DEW/1470/NA
  90. ^ "4. Energizing development without compromising the climate" (PDF). World Development Report 2010: Development and Climate Change (PDF). Washington, DC: The International Bank for Reconstruction and Development / The World Bank. 2010. p. 192, Box 4.2: Efficient and clean energy can be good for development. doi:10.1596/978-0-8213-7987-5. ISBN 978-0821379875.
  91. ^ Sixth compilation and synthesis of initial national communications from Parties not included in Annex I to the Convention. Note by the secretariat. Executive summary (PDF). Geneva, Switzerland: United Nations Framework Convention on Climate Change (UNFCCC). 2005. pp. 10–12.
  92. ^ a b c d Compilation and synthesis of fifth national communications. Executive summary. Note by the secretariat (PDF). Geneva (Switzerland): United Nations Framework Convention on Climate Change (UNFCCC). 2011. pp. 9–10.
  93. ^ Fisher, B.; et al. "3.1 Emissions scenarios". Issues related to mitigation in the long-term context. in Rogner et al. (2007)
  94. ^ "1.3.2 Future outlook". Introduction. in Rogner et al. (2007)
  95. ^ "1.3.2.4 Total GHG emissions". Introduction. Archived from the original on 28 January 2013. Retrieved 4 September 2012. in Rogner et al. (2007)
  96. ^ carbon dioxide, methane, nitrous oxide, sulfur hexafluoride

Bibliography[edit]

External links[edit]